Complementary Metal-Oxide-Semiconductor Integrated Carbon Nanotube Arrays: Toward Wide-Bandwidth Single-Molecule Sensing Systems.
نویسندگان
چکیده
There is strong interest in realizing genomic molecular diagnostic platforms that are label-free, electronic, and single-molecule. One attractive transducer for such efforts is the single-molecule field-effect transistor (smFET), capable of detecting a single electronic charge and realized with a point-functionalized exposed-gate one-dimensional carbon nanotube field-effect device. In this work, smFETs are integrated directly onto a custom complementary metal-oxide-semiconductor chip, which results in an array of up to 6000 devices delivering a measurement bandwidth of 1 MHz. In a first exploitation of these high-bandwidth measurement capabilities, point functionalization through electrochemical oxidation of the devices is observed with microsecond temporal resolution, which reveals complex reaction pathways with resolvable scattering signatures. High-rate random telegraph noise is detected in certain oxidized devices, further illustrating the measurement capabilities of the platform.
منابع مشابه
Materials and fabrication sequences for water soluble silicon integrated circuits at the 90nm node
Articles you may be interested in Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits Appl. Compact models considering incomplete voltage swing in complementary metal oxide semiconductor circuits at ultralow voltages: A circuit perspective on limits of switching energy Monolithically integrated low-loss silic...
متن کاملCobalt Oxide Nanosheet and CNT Micro Carbon Monoxide Sensor Integrated with Readout Circuit on Chip
The study presents a micro carbon monoxide (CO) sensor integrated with a readout circuit-on-a-chip manufactured by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and a post-process. The sensing film of the sensor is a composite cobalt oxide nanosheet and carbon nanotube (CoOOH/CNT) film that is prepared by a precipitation-oxidation method. The structure of the CO ...
متن کاملCMOS-based carbon nanotube pass-transistor logic integrated circuits
Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based ...
متن کاملMetal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes.
Complementary metal-oxide semiconductor (CMOS) operation is very desirable for logic circuit applications as it offers rail-to-rail swing, larger noise margin, and small static power consumption. However, it remains to be a challenging task for nanotube-based devices. Here in this paper, we report our progress on metal contact engineering for n-type nanotube transistors and CMOS integrated circ...
متن کاملComplementary metal oxide semiconductor compatible silicon nanowires-on-a-chip: fabrication and preclinical validation for the detection of a cancer prognostic protein marker in serum.
An integrated translational biosensing technology based on arrays of silicon nanowire field-effect transistors (SiNW FETs) is described and has been preclinically validated for the ultrasensitive detection of the cancer biomarker ALCAM in serum. High-quality SiNW arrays have been rationally designed toward their implementation as molecular biosensors. The FET sensing platform has been fabricate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2016